The Internet

Log In or Register

Graph showing the derivative of the function y = (e^(-2x))((1 - e^(-2x))^(-1/2))

Ask AI: find the derivative of y=(e^-2x)((1-e^-2x)^-1/2) ...with e being eulers constant

Bookmark

0 Points

▲ good image

bad image ▼

Ask AI on The Internet

Question: find the derivative of y=(e^-2x)((1-e^-2x)^-1/2) ...with e being eulers constant

Asked by paul_anthony

0 Points

Log In or Register to Vote

To find the derivative of the function \( y = (e^{-2x}) \left(1 - e^{-2x}\right)^{-\frac{1}{2}} \), we need to use the product rule as well as the chain rule. Let's denote the function as \( y = u \cdot v \), where \[ u = e^{-2x} \] \[ v = \left(1 - e^{-2x}\right)^{-\frac{1}{2}} \] First, we need to find the derivatives of \( u \) and \( v \). ### 1. Derivative of \( u = e^{-2x} \) Using the chain rule for the exponential function: \[ \frac{du}{dx} = \frac{d}{dx}\left(e^{-2x}\right) = e^{-2x} \cdot (-2) = -2e^{-2x} \] ### 2. Derivative of \( v = \left(1 - e^{-2x}\right)^{-\frac{1}{2}} \) Let's use the chain rule for this part also. Let \( w = 1 - e^{-2x} \), so \( v = w^{-\frac{1}{2}} \). First, find \( \frac{dw}{dx} \): \[ \frac{dw}{dx} = \frac{d}{dx} \left(1 - e^{-2x}\right) = 0 - (-2)e^{-2x} = 2e^{-2x} \] Now, find \( \frac{dv}{dw} \): \[ \frac{dv}{dw} = \frac{d}{dw}\left(w^{-\frac{1}{2}}\right) = -\frac{1}{2} w^{-\frac{3}{2}} \] Now use the chain rule to find \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = \frac{dv}{dw} \cdot \frac{dw}{dx} = -\frac{1}{2} \left(1 - e^{-2x}\right)^{-\frac{3}{2}} \cdot 2e^{-2x} = -\left(1 - e^{-2x}\right)^{-\frac{3}{2}} e^{-2x} \] ### 3. Apply the Product Rule The product rule states that if \( y = u \cdot v \), then \[ \frac{dy}{dx} = u'v + uv' \] We already found \( u' = -2e^{-2x} \) and \( v' = -\left(1 - e^{-2x}\right)^{-\frac{3}{2}} e^{-2x} \). Therefore, \[ \frac{dy}{dx} = (u'v) + (uv') \] \[ \frac{dy}{dx} = (-2e^{-2x}) \left(1 - e^{-2x}\right)^{-\frac{1}{2}} + (e^{-2x}) \left[-\left(1 - e^{-2x}\right)^{-\frac{3}{2}} e^{-2x} \right] \] Simplify this expression: \[ \frac{dy}{dx} = -2e^{-2x}\left(1 - e^{-2x}\right)^{-\frac{1}{2}} - e^{-4x}\left(1 - e^{-2x}\right)^{-\frac{3}{2}} \] Thus, the derivative of the given function is: \[ \frac{dy}{dx} = -2e^{-2x}\left(1 - e^{-2x}\right)^{-\frac{1}{2}} - e^{-4x}\left(1 - e^{-2x}\right)^{-\frac{3}{2}} \]

Answered by gpt-4o

May 14, 2024, 5:09 p.m.

0 Points

Log In or Register to Vote

Think your answer is better than the AI's? Post it below.

Please log in or sign up to post your answer.

This article was generated in part by one of OpenAI’s large-scale language-generation model, answering user paul_anthony's question. Images were generated with OpenAI's AI model, DALL·E 2. The Internet takes ultimate responsibility for the content of this publication.
If you want your question answered by an AI, click here.

Published: Tuesday, May 14, 2024

Comment Section

Post your own comment:

USD